Hessenberg – Sobolev matrices and Favard type theorem

dc.contributor.authorIgnacio Pérez Yzquierdo
dc.date.accessioned2024-08-02T15:46:24Z
dc.date.available2024-08-02T15:46:24Z
dc.date.issued2022-12-01
dc.description.abstractWe study the relation between certain non-degenerate lower Hessenberg infinite matrices G and the existence of sequences of orthogonal polynomials with respect to Sobolev inner products. In other words, we extend the well-known Favard theorem for Sobolev orthogonality. We characterize the structure of the matrix G and the associated matrix of formal moments MG in terms of certain matrix operators.
dc.identifier.citationPijeira-Cabrera, H., Decalo-Salgado, L. & Pérez-Yzquierdo, I. Hessenberg–Sobolev Matrices and Favard Type Theorem. Bull. Malays. Math. Sci. Soc. 46, 40 (2023).
dc.identifier.urihttps://repositoriovip.uasd.edu.do/handle/123456789/174
dc.titleHessenberg – Sobolev matrices and Favard type theorem
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s40840-022-01445-3__.pdf
Size:
393.51 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.6 KB
Format:
Item-specific license agreed to upon submission
Description: