A look at generalized degenerate Bernoulli and Euler matrices

Thumbnail Image
Date
2023-06-16
Authors
Juan Hernández
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this paper, we consider the generalized degenerate Bernoulli/Euler polynomial matrices and study some algebraic properties for them. In particular, we focus our attention on some matrix-inversion formulae involving these matrices. Furthermore, we provide analytic properties for the so-called generalized degenerate Pascal matrix of the first kind, and some factorizations for the generalized degenerate Euler polynomial matrix.
Description
Keywords
Citation
APA Hernández, J., Peralta, D., & Quintana, Y. (2023). A look at generalized degenerate Bernoulli and Euler matrices. Mathematics, 11(12), 2731. https://doi.org/10.3390/math11122731 <br> MDPI and ACS Style Hernández, J.; Peralta, D.; Quintana, Y. A Look at Generalized Degenerate Bernoulli and Euler Matrices. Mathematics 2023, 11, 2731. https://doi.org/10.3390/math11122731 AMA Style Hernández J, Peralta D, Quintana Y. A Look at Generalized Degenerate Bernoulli and Euler Matrices. Mathematics. 2023; 11(12):2731. https://doi.org/10.3390/math11122731 Chicago/Turabian Style Hernández, Juan, Dionisio Peralta, and Yamilet Quintana. 2023. "A Look at Generalized Degenerate Bernoulli and Euler Matrices" Mathematics 11, no. 12: 2731. https://doi.org/10.3390/math11122731